Novel organomodified nanoclay (bentonite) was reinforced in polystyrene, polyamide, and polystyrene/polyamide blend matrix to develop a series of nanocomposites using a solution processing technique. Modification of bentonite nanoclay was performed… Click to show full abstract
Novel organomodified nanoclay (bentonite) was reinforced in polystyrene, polyamide, and polystyrene/polyamide blend matrix to develop a series of nanocomposites using a solution processing technique. Modification of bentonite nanoclay was performed via an ion-exchange method with l-serine amino acid. Properties of polystyrene/modified bentonite, polyamide/modified bentonite, and polystyrene/polyamide/modified bentonite nanocomposites were studied using Fourier transform infrared spectroscopy, field emission scanning electron microscopy, thermogravimetric analysis, differential scanning calorimetry, X-ray diffraction, and cone calorimetry techniques. A unique honeycomb-like pattern was observed for polystyrene/polyamide blend with 0.5 g modified bentonite content. The morphology analysis revealed a co-continuous structure in which nanoclay particles were trapped. The polystyrene/polyamide/modified bentonite nanocomposite also showed fine improvement in thermal properties of the system, that is, initial decomposition temperature = 309–321°C and maximum weight loss temperature = 390–400°C. Glass transition temperature (351–385°C) of the series was also higher than the polystyrene/modified bentonite and polyamide/modified bentonite series. Increasing nanoclay content decreased the peak heat release rate of polystyrene/polyamide/modified bentonite 0.5 nanocomposite to 145 kW m−2, indicating improvement in nonflammability. Moreover, the blend and nanoclay series possess better flame retardancy than the blend and other nanocomposite series developed.
               
Click one of the above tabs to view related content.