Background: The occurrence of radiation pneumonia not only affects the efficacy of radiotherapy, but also seriously threatens the health of patients undergoing radiotherapy for lung cancer. Studies have suggested that… Click to show full abstract
Background: The occurrence of radiation pneumonia not only affects the efficacy of radiotherapy, but also seriously threatens the health of patients undergoing radiotherapy for lung cancer. Studies have suggested that a feining granule is a potentially effective drug for the treatment of radiation pneumonitis, but its mechanism and main components are still unclear. Our study used bioinformatics methods to analyze the main drug Aster tataricus L. f. in feining granules and aims to gain the main mechanism in the treatment of radiation pneumonitis. Methods: Analyzed the effective drug components and targets of A tataricus through the Traditional Chinese Medicine Systems Pharmacology website. And obtained gene targets related to radiation pneumonia through the website of OMIM, Genecard, and Disgenet. Protein–protein interaction (PPI), gene ontology (GO), and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis of the obtained drugs and gene-related targets were conducted. Verify the effects of small molecule drugs on corresponding targets by conducting molecular docking experiments. Results: In total, 193 targets were identified for 13 molecules of A tataricus, and 897 genes were identified to be related to radiation pneumonia. Finally, we obtained 111 genes by crossing drug and disease-related target genes. Using PPI, GO, and KEGG analysis, we found TP53, HSP90AA1, RELA, JUN, AKT1, mitogen-activated protein kinase 1 (MAPK1), tumor necrosis factor (TNF), and interleukin-6 (IL-6) are the most critical genes, which were mainly focused on the GOs of DNA-binding transcription factor, RNA polymerase II-specific DNA-binding transcription factor and protein serine/threonine kinase activity, and the pathways of lipids and atherosclerosis, advanced glycation end products and their receptors, and IL-17. Conclusion: Through molecular docking experiments, it was found that the small molecules of quercetin and luteolin bind tightly to RELA and JUN proteins. We reveal the mechanism of action of A tataricus in the treatment of radiation pneumonia. Quercetin and luteolin may be effective small molecules for radiation pneumonitis.
               
Click one of the above tabs to view related content.