LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Polyethylene Terephthalate/Acryl Butadiene Styrene Copolymer Incorporated with Oak Shell, Potassium Sorbate and Egg Shell Nanoparticles for Food Packaging Applications: Control of Bacteria Growth, Physical and Mechanical Properties

Photo from wikipedia

In this study, the effect of renewable and degradable resources including Oak shell, potassium sorbate and egg shell nanoparticles on the overall properties of polyethylene terephthalate (PET)/acryl butadiene styrene (ABS)… Click to show full abstract

In this study, the effect of renewable and degradable resources including Oak shell, potassium sorbate and egg shell nanoparticles on the overall properties of polyethylene terephthalate (PET)/acryl butadiene styrene (ABS) were investigated. In this regard, the effect of mentioned additives on the mechanical properties, oxygen permeability, water absorption rate and anti-microbial properties of recycled PET/ABS blend were examined. The results revealed that the addition of ABS to PET can lead to an increase in tensile strength, while it can lead to a decrease in the elongation at break and Young's modulus. Moreover, the addition of Oak shell and potassium sorbate to the PET/ABS mixture can enhance the antimicrobial properties. However, these additives can lead to a significant increase in the water absorption and oxygen permeability within the PET/ABS mixture. On the other hand, reinforcement of PET/ABS with egg shell nanoparticles not only improves the mechanical properties of PET/ABS but also can lead to a decrease in the water absorption and oxygen permeability compared with neat PET/ABS. The main aim of this study is to develop anti-bacterial and degradable plastic structures based on recycled PET/ABS to find a solution for recycling plastic based scraps or improving their natural degradability.

Keywords: oak shell; shell potassium; egg shell; shell; potassium sorbate; pet abs

Journal Title: Polymers from Renewable Resources
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.