LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

An Enhanced TSA-MLP Model for Identifying Credit Default Problems

Photo from wikipedia

Credit default has always been one of the critical factors in the development of personal credit business. By establishing a default identification model, default can be avoided effectively. There are… Click to show full abstract

Credit default has always been one of the critical factors in the development of personal credit business. By establishing a default identification model, default can be avoided effectively. There are some existing methods to identify credit default. However, these methods have some problems: Problem (1): It is different to deal the non-linear data, Problem (2): The local stagnation results in the high error rate, and Problem (3): The premature convergence leads to the low classification rate. In this paper, the sinhTSA-MLP default risk identification model is proposed to solve these problems. In this model, the proposed sinhTSA method can effectively avoid the problems of falling into local optimum and premature convergence. And the benchmark test results demonstrate sinhTSA is superior to other methods. According to the two experiments, the classification rate reaches 77.35% and 96.48%. Therefore, the sinhTSA-MLP default identification model has some particular advantages in identifying credit problems The feasibility of the sinhTSA-MLP default identification model has been proved through helping to manage credit default more consciously.

Keywords: default; credit; credit default; mlp; identification model

Journal Title: SAGE Open
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.