LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Leveraging Artificial Intelligence and Synthetic Data Derivatives for Spine Surgery Research.

Photo from wikipedia

STUDY DESIGN Retrospective cohort study. OBJECTIVES Leveraging electronic health records (EHRs) for spine surgery research is impeded by concerns regarding patient privacy and data ownership. Synthetic data derivatives may help… Click to show full abstract

STUDY DESIGN Retrospective cohort study. OBJECTIVES Leveraging electronic health records (EHRs) for spine surgery research is impeded by concerns regarding patient privacy and data ownership. Synthetic data derivatives may help overcome these limitations. This study's objective was to validate the use of synthetic data for spine surgery research. METHODS Data came from the EHR from 15 hospitals. Patients that underwent anterior cervical or posterior lumbar fusion (2010-2020) were included. Real data were obtained from the EHR. Synthetic data was generated to simulate the properties of the real data, without maintaining a one-to-one correspondence with real patients. Within each cohort, ability to predict 30-day readmissions and 30-day complications was evaluated using logistic regression and extreme gradient boosting machines (XGBoost). RESULTS We identified 9,072 real and 9,088 synthetic cervical fusion patients. Descriptive characteristics were nearly identical between the 2 datasets. When predicting readmission, models built using real and synthetic data both had c-statistics of .69-.71 using logistic regression and XGBoost. Among 12,111 real and 12,126 synthetic lumbar fusion patients, descriptive characteristics were nearly the same for most variables. Using logistic regression and XGBoost to predict readmission, discrimination was similar with models built using real and synthetic data (c-statistics .66-.69). When predicting complications, models derived using real and synthetic data showed similar discrimination in both cohorts. Despite some differences, the most influential predictors were similar in the real and synthetic datasets. CONCLUSION Synthetic data replicate most descriptive and predictive properties of real data, and therefore may expand EHR research in spine surgery.

Keywords: surgery research; synthetic data; data derivatives; spine surgery

Journal Title: Global spine journal
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.