Background: A 2 mm–wide ultrahigh-molecular-weight polyethylene (UHMWPE) tape improves the contact pressure at root repair sites compared with high-strength suture and provides a stronger repair construct. UHMWPE tape is commonly… Click to show full abstract
Background: A 2 mm–wide ultrahigh-molecular-weight polyethylene (UHMWPE) tape improves the contact pressure at root repair sites compared with high-strength suture and provides a stronger repair construct. UHMWPE tape is commonly used in rotator cuff repair, and fixation is often achieved with knotless suture anchors. The optimal method for tape fixation for meniscal root repair has not been established. Hypothesis: The use of suture anchors for the tibial fixation of 2-mm UHMWPE tape transosseous root repairs will lead to better biomechanical performance compared with other fixation methods. Methods: The medial meniscal posterior root attachment in 25 porcine knees was divided, and a standardized transtibial root repair was performed using 2-mm UHMWPE tape. The testing was performed by cyclic loading followed by load to failure. Tibial fixation was randomized to 5 tibial fixation types: (1) cortical fixation button, (2) pound-in suture anchor with screw-down interference suture locking, (3) tap-in suture anchor with inner locking plug, (4) postscrew, and (5) postscrew and washer. Results: There was no difference in displacement during cyclic loading between tibial fixation groups except for a highly significant difference in the maximum load at failure. Repairs in both suture anchor fixation groups all failed by tape slippage at relatively low loads (median, 145 and 116 N, respectively). Repairs tied over a cortical button, postscrew, or screw and washer failed by tape breakage at loads of 431, 405, and 528 N. Conclusion: For meniscal root repairs with 2-mm UHMWPE tape, use of suture anchors offers weaker fixation compared with tying over a button or postscrew/washer. While suture anchor fixation may be adequate for nonweightbearing postoperative protocols, it may not allow for more accelerated weightbearing.
               
Click one of the above tabs to view related content.