LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Iyoite, MnCuCl(OH)3 and misakiite, Cu3Mn(OH)6Cl2: new members of the atacamite family from Sadamisaki Peninsula, Ehime Prefecture, Japan

Photo by robertbye from unsplash

Abstract Two new members of the atacamite family were discovered recently in the Sadamisaki Peninsula, Ehime Prefecture, Japan. Iyoite, MnCuCl(OH)3, is an Mn-Cu ordered analogue of botallackite, while misakiite, Cu3Mn(OH)6Cl2,… Click to show full abstract

Abstract Two new members of the atacamite family were discovered recently in the Sadamisaki Peninsula, Ehime Prefecture, Japan. Iyoite, MnCuCl(OH)3, is an Mn-Cu ordered analogue of botallackite, while misakiite, Cu3Mn(OH)6Cl2, is an Mn-rich analogue of kapellasite. Both minerals occur in manganese ore crevices in close association with one another. Iyoite forms radial and dendritic aggregates consisting of pale green, bladed crystals. Misakiite commonly exists in emerald green, tabular, hexagonal crystals. The densities of iyoite and misakiite were calculated to be 3.22 and 3.42 g cm−3 based on their empirical formulae and powder X-ray diffraction data. Under the same axial setting of botallackite, iyoite is monoclinic, space group P21/m, a = 5.717(2), b = 6.586(2), c = 5.623(3) Å, β = 88.45(3)° and V = 211.63(15) Å3. Misakiite is trigonal, space group P3̅m1, with a = 6.4156(4), c = 5.7026(5) Å and V = 203.27(3) Å3. The structures of both minerals are classified as layer type and the two are closely related. These new minerals were formed by the reaction between seawater and naturally-occurring manganese ores including native copper. These minerals are challenging to produce synthetically. Misakiite was synthesized successfully using a hydrothermal method, while iyoite could not be made.

Keywords: members atacamite; new members; peninsula ehime; sadamisaki peninsula; atacamite family; ehime prefecture

Journal Title: Mineralogical Magazine
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.