Introduction Multiple issues arise for a wider application of chimeric antigen receptor (CAR) T cell therapy including manufacturing time and antigen escape. Here we report data on an anti-CD19/CD22 dual… Click to show full abstract
Introduction Multiple issues arise for a wider application of chimeric antigen receptor (CAR) T cell therapy including manufacturing time and antigen escape. Here we report data on an anti-CD19/CD22 dual CAR-T (GC022F) therapy based on a novel manufacturing platform, from a phase I clinical study (NCT04129099) in treating patients with B-cell acute lymphoblastic leukemia (B-ALL). Methods Peripheral blood (PB) mononuclear cells were obtained by leukapheresis. T-cells were separated and transduced with lentivirus that encodes a CD19/CD22 directed 4-1BB: ζ CAR. GC022F cells were manufactured using a novel FasTCARTM platform which takes 24 hours, while the conventional CD19/CD22 dual CAR-T (GC022C) cells used as parallel control in the preclinical study were manufactured by conventional process which typically takes 9-14 days. The phase I dose escalation study was initiated to explore the safety and efficacy of GC022F in patients with B-ALL. All patients received a conditioning regimen of IV fludarabine (25mg/m2/d) and cyclophosphamide (250mg/m2/d) for 3 days prior to GC022F infusion. Results When compared with the GC022C, GC022F cells showed 1) less exhaustion as indicated by lower percentage of PD-1+LAG3+ cells following co-culturing with tumor cells, 2) younger phenotypes as demonstrated by more abundant T central memory cells (Tcm; CCR7+CD45RA+ or CD45RO+CD62L+), 3) higher expansion fold at in vitro culture, and 4) high anti-leukemia efficacy in mice model (Fig.1). Comparing in vivo efficacy of GC022F with GC022C cells at lower doses, GC022F treatment were more potent and could reduce tumor burden earlier and faster, and led to significantly prolonged overall survival of the experimental animals. From Nov. 2019 to Jun. 2020, 9 children and 1 adult with B-ALL were enrolled and infused with GC022F, 2 in low-dose (6.0×104/kg), 7 in medium dose (1.0-1.5×105/kg), 1 in high-dose (2.25×105/kg). Patients' median observation time was 99 (14-210) days on the day of cut-off. Characteristics of enrolled patients are shown in Table 1. The median age was 10 (3-48) years, and the median bone marrow (BM) blasts were 21.0 (0.1-63.5) % at enrollment. Three patients had prior CD19 CAR-T cell therapy history and one of whom had prior allogeneic hematopoietic stem cell transplantation (allo-HSCT). After infusion, the median peak of circulating CAR-T cell copy number was 2.29 ×105 copies/µg genomic DNA (0.0014-5.66), which occurred around day 14 (day10 - day 28). Importantly, GC022F persisted well in PB with a median of 2.40×105 copies/µg genomic DNA (0.75-3.98) on day 28 in 5 of 9 patients with available 4 weeks of cellular kinetics data. GC022F exerted a superior safety profile with no observed grade ≥ 3 cytokine release syndrome (CRS) and neurotoxicity in all patients. Among those 6 patients with CRS, only 1 at high dose level had grade 2 CRS; only 1 developed grade 1 neurotoxicity. After GC022F infusion, 6/6 patients with BM blasts > 5% at enrollment achieved complete remission (CR) by day 28, 5/6 with minimal residual disease (MRD)-negative CR. For those 4 patients with MRD positive disease at enrollment, 3 became MRD-negative CR by day 28, 1 had persist MRD positive disease and withdrew from the study by 2 weeks. Five of 8 MRD-negative CR patients subsequently made a choice to pursue consolidation allo-HSCT with a median time interval of 57 (48-71) days post GC022F infusion and all have remained in MRD-negative CR except 1 died from graft-versus-host disease (GVHD) and infection 143 days post GC022F infusion. Of the other 3 patients without allo-HSCT, 2 relapsed with CD19+/CD22+ disease at 12-16 weeks follow-up, including the patient with prior history of CD19 CAR-T treatment and transplant. Conclusion This study demonstrated that anti-CD19/CD22 dual CAR T-cells could be successfully manufactured by FasTCARTM technology in 24 hours, with younger and less exhausted phenotypes. Moreover, the Dual FasTCAR-T cells showed more potent efficacy in xenograft mouse model compared to the conventional dual CAR-T cells. Our clinical data demonstrate that GC022F is safe and efficacious in treating patients with CD19+CD22+ B-ALL. More data on additional patients and longer observation time are needed to further evaluate CD19/CD22 dual FasTCAR-T cell product. Cai: Gracell Biotechnologies Ltd: Current Employment. Wang:Gracell Biotechnologies Ltd: Current Employment. Chen:Gracell Biotechnologies Ltd: Current Employment. Ye:Gracell Biotechnologies Co., Ltd.: Current Employment. He:Gracell Biotechnologies Co., Ltd.: Current Employment. Cao:Gracell Biotechnologies Ltd: Current Employment. Sersch:Gracell Biotechnologies Co., Ltd.: Current Employment.
               
Click one of the above tabs to view related content.