The interaction of Menin (MEN1) and MLL (MLL1, KMT2A) is a dependency and potential therapeutic opportunity against NPM1-mutant (NPM1mut) and MLL-rearranged (MLL-r) leukemias. Concomitant activating driver mutations in the gene… Click to show full abstract
The interaction of Menin (MEN1) and MLL (MLL1, KMT2A) is a dependency and potential therapeutic opportunity against NPM1-mutant (NPM1mut) and MLL-rearranged (MLL-r) leukemias. Concomitant activating driver mutations in the gene encoding the tyrosine kinase FLT3 occur in both leukemias and are particularly common in the NPM1mut subtype. Transcriptional profiling upon pharmacological inhibition of the Menin-MLL complex revealed specific changes in gene expression with downregulation of the MEIS1 transcription-factor and its transcriptional target gene FLT3 being most pronounced. Combining Menin-MLL-inhibition with specific small-molecule kinase inhibitors of FLT3-phosphorylation resulted in a significantly superior reduction of phosphorylated FLT3 and transcriptional suppression of genes downstream to FLT3 signaling. The drug combination induced synergistic inhibition of proliferation as well as enhanced apoptosis and differentiation compared to single-drug treatment in models of human and murine NPM1mut and MLL-r leukemias harboring an FLT3 mutation. Primary AML cells harvested from patients with NPM1mutFLT3mut AML showed significantly better responses to combined Menin and FLT3-inhibition than to single-drug or vehicle control treatment, while AML cells with wildtype NPM1, MLL, and FLT3 were not affected by any of the two drugs. In vivo treatment of leukemic animals with MLL-r FLT3mut leukemia reduced leukemia burden significantly and prolonged survival compared to the single-drug and vehicle control groups. Our data suggest that combined Menin-MLL and FLT3-inhibition represents a novel and promising therapeutic strategy for patients with NPM1mut or MLL-r leukemia and concurrent FLT3 mutation.
               
Click one of the above tabs to view related content.