The surge of human genetic information, enabled by increasingly facile and economically feasible genomic technologies, has accelerated discoveries on the relationship of germline genetic variation to hematologic diseases. For example,… Click to show full abstract
The surge of human genetic information, enabled by increasingly facile and economically feasible genomic technologies, has accelerated discoveries on the relationship of germline genetic variation to hematologic diseases. For example, germline variation in GATA2, encoding a vital transcriptional regulator of multilineage hematopoiesis, creates a predisposition to bone marrow failure and acute myeloid leukemia termed GATA2 deficiency syndrome. More than 300 GATA2 variants representing missense, truncating, and noncoding enhancer mutations have been documented. Although these variants can diminish GATA2 expression and/or function, the functional ramifications of many variants are unknown. Studies using genetic rescue and knockin mouse systems have established that GATA2 mutations differentially affect molecular processes in distinct target genes and within a single target cell. Considering that target genes for a transcription factor can differ in sensitivity to altered levels of the factor, and transcriptional mechanisms are often cell type specific, the context-dependent consequences of GATA2 mutations in experimental systems portend the complex phenotypes and interindividual variation of GATA2 deficiency syndrome. This review documents GATA2 human genetics and the state of efforts to traverse from physiological insights to pathogenic mechanisms.
               
Click one of the above tabs to view related content.