LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Autotitrating external positive end-expiratory airway pressure to abolish expiratory flow limitation during tidal breathing in patients with severe COPD: a physiological study

Photo from wikipedia

Background The optimal noninvasive application of external positive end-expiratory pressure (EPAP) to abolish tidal-breathing expiratory flow limitation (EFLT) and minimise intrinsic positive end-expiratory pressure (PEEPi) is challenging in COPD patients.… Click to show full abstract

Background The optimal noninvasive application of external positive end-expiratory pressure (EPAP) to abolish tidal-breathing expiratory flow limitation (EFLT) and minimise intrinsic positive end-expiratory pressure (PEEPi) is challenging in COPD patients. We investigated whether auto-titrating EPAP, using the forced oscillation technique (FOT) to detect and abolish EFLT, would minimise PEEPi, work of breathing and neural respiratory drive (NRD) in patients with severe COPD. Methods Patients with COPD with chronic respiratory failure underwent auto-titration of EPAP using a FOT-based algorithm that detected EFLT. Once optimal EPAP was identified, manual titration was performed to assess NRD (using diaphragm and parasternal intercostal muscle electromyography, EMGdi and EMGpara, respectively), transdiaphragmatic inspiratory pressure swings (ΔPdi), transdiaphragmatic pressure–time product (PTPdi) and PEEPi, between EPAP levels 2 cmH2O below to 3 cmH2O above optimal EPAP. Results Of 10 patients enrolled (age 65±6 years; male 60%; body mass index 27.6±7.2 kg.m−2; forced expiratory volume in 1 s 28.4±8.3% predicted), eight had EFLT, and optimal EPAP was 9 (range 4–13) cmH2O. NRD was reduced from baseline EPAP at 1 cmH2O below optimal EPAP on EMGdi and at optimal EPAP on EMGpara. In addition, at optimal EPAP, PEEPi (0.80±1.27 cmH2O versus 1.95± 1.70 cmH2O; p<0.05) was reduced compared with baseline. PTPdi (10.3±7.8 cmH2O·s−1 versus 16.8±8.8 cmH2O·s−1; p<0.05) and ΔPdi (12.4±7.8 cmH2O versus 18.2±5.1 cmH2O; p<0.05) were reduced at optimal EPAP+1 cmH2O compared with baseline. Conclusion Autotitration of EPAP, using a FOT-based algorithm to abolish EFLT, minimises transdiaphragmatic pressure swings and NRD in patients with COPD and chronic respiratory failure. An automated ventilator algorithm, using the forced oscillation technique to detect tidal breathing expiratory flow limitation (EFLT), identifies the optimum EPAP at which EFLT is abolished without causing unnecessary lung hyperinflation https://bit.ly/2WNyhWP

Keywords: expiratory; optimal epap; cmh2o; pressure; positive end

Journal Title: European Respiratory Journal
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.