Based on highly ordered TiO2 nanotube arrays (NTAs), we successfully fabricated the Cu2O-TiO2 NTA heterojunction by a simple thermal decomposition process for the first time. The anodic TiO2 NTAs were… Click to show full abstract
Based on highly ordered TiO2 nanotube arrays (NTAs), we successfully fabricated the Cu2O-TiO2 NTA heterojunction by a simple thermal decomposition process for the first time. The anodic TiO2 NTAs were functioned as both “nano-container” and “nano-reactors” to load and synthesize the narrow band Cu2O nanoparticles. The loaded Cu2O expanded absorption spectrum of the TiO2 NTAs from ultraviolent range to visible light range. We found that the Cu2O-TiO2 NTA heterojunction films had visible activity towards photocatalytic degrading methyl orange (MO). The photocatalytic abilities of the Cu2O-TiO2 NTA heterojunction films were found increased with the Cu2O content from 0.05 to 0.3 mol/L. This could be explained by more electron-hole pairs generated and less recombination, when the Cu2O-TiO2 heterojunction got formed. Here, we put forward this promising method, hoping it can facilitate the mass production and applications of Cu2O-TiO2 NTA heterojunction.
               
Click one of the above tabs to view related content.