LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Tuning Hierarchical Ferric Nanostructures-Decorated Diatomite for Supercapacitors

Photo from archive.org

FeOOH nanosheets on porous diatomite have been successfully prepared by a facile two-step hydrothermal approach for supercapacitors, and then α-Fe2O3 and γ-Fe2O3 nanostructures are obtained via calcination under different atmospheres… Click to show full abstract

FeOOH nanosheets on porous diatomite have been successfully prepared by a facile two-step hydrothermal approach for supercapacitors, and then α-Fe2O3 and γ-Fe2O3 nanostructures are obtained via calcination under different atmospheres and temperatures. The morphologies and structures of all the samples are investigated in detail to make the hierarchical architecture clear. Besides, systemic tests are carried out in 1 M Na2SO4 electrolyte to characterize the electrochemical properties of these materials. Among the iron-related composite electrodes, diatomite@FeOOH owns the highest specific capacitance (157.9 F g−1 at a current density of 0.5 A g−1) and best cycling performance (98.95% retention after 1000 cycles), which is considered to be a potential material for high-performance supercapacitors. Furthermore, the synthesizing strategy can be extended to the preparation of other metallic oxide-derived functional materials towards energy storage and conversion.

Keywords: hierarchical ferric; diatomite supercapacitors; decorated diatomite; nanostructures decorated; tuning hierarchical; ferric nanostructures

Journal Title: Nanoscale Research Letters
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.