LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Effect of non-stoichiometry of initial reagents on morphological and structural properties of perovskites CH3NH3PbI3

Photo from archive.org

The properties of films of organic-inorganic perovskites CH3NH3PbI2.98Cl0.02 depending on the ratio of starting reagents in solutions (PbI2:{CH3NH3I + CH3NH3Cl}) has been investigated. It was found that the formation of the perovskite… Click to show full abstract

The properties of films of organic-inorganic perovskites CH3NH3PbI2.98Cl0.02 depending on the ratio of starting reagents in solutions (PbI2:{CH3NH3I + CH3NH3Cl}) has been investigated. It was found that the formation of the perovskite structure with the ratio of the initial reagents PbI2: CH3NH3I = 1:1 occurs at 70–80 °C, and with the increase of the temperature of thermal treatment to 120 °C, the thermal destruction of the perovskite begins. When the ratio of the starting reagents PbI2: CH3NH3I = 1:2, the formation of the perovskite structure occurs through the intermediate compound (CH3NH3)2PbI4, and when the ratio is 1:3—(CH3NH3)3PbI5 and (CH3NH3)2PbI4. Independent on the ratio of the initial components (CH3NH3I:PbI2), the ratio between the content of lead and iodine in the films remains unchanged, that is why a significant difference in the film properties could be explained by the anisotropy of the particle shape, which is consistent with the data of electron microscopy and X-ray diffractometry.

Keywords: stoichiometry initial; initial reagents; ratio; pbi2 ch3nh3i; non stoichiometry; effect non

Journal Title: Nanoscale Research Letters
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.