LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

The Effect of Decomposed PbI2 on Microscopic Mechanisms of Scattering in CH3NH3PbI3 Films

Photo by introspectivedsgn from unsplash

Hybrid organic-inorganic perovskites (HOIPs) exhibit long electronic carrier diffusion length, high optical absorption coefficient, and impressive photovoltaic device performance. At the core of any optoelectronic device lie the charge transport… Click to show full abstract

Hybrid organic-inorganic perovskites (HOIPs) exhibit long electronic carrier diffusion length, high optical absorption coefficient, and impressive photovoltaic device performance. At the core of any optoelectronic device lie the charge transport properties, especially the microscopic mechanism of scattering, which must efficiently affect the device function. In this work, CH3NH3PbI3 (MAPbI3) films were fabricated by a vapor solution reaction method. Temperature-dependent Hall measurements were introduced to investigate the scattering mechanism in MAPbI3 films. Two kinds of temperature-mobility behaviors were identified in different thermal treatment MAPbI3 films, indicating different scattering mechanisms during the charge transport process in films. We found that the scattering mechanisms in MAPbI3 films were mainly influenced by the decomposed PbI2 components, which could be easily generated at the perovskite grain boundaries (GBs) by releasing the organic species after annealing at a proper temperature. The passivation effects of PbI2 in MAPbI3 films were investigated and further discussed with emphasis on the scattering mechanism in the charge transport process.

Keywords: mapbi3 films; decomposed pbi2; ch3nh3pbi3; effect decomposed; charge transport

Journal Title: Nanoscale Research Letters
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.