LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Chitosan-capped enzyme-responsive hollow mesoporous silica nanoplatforms for colon-specific drug delivery

Photo from wikipedia

An enzyme-responsive colon-specific delivery system was developed based on hollow mesoporous silica spheres (HMSS) to which biodegradable chitosan (CS) was attached via cleavable azo bonds (HMSS–N=N–CS). Doxorubicin (DOX) was encapsulated… Click to show full abstract

An enzyme-responsive colon-specific delivery system was developed based on hollow mesoporous silica spheres (HMSS) to which biodegradable chitosan (CS) was attached via cleavable azo bonds (HMSS–N=N–CS). Doxorubicin (DOX) was encapsulated in a noncrystalline state in the hollow cavity and mesopores of HMSS with the high loading amount of 35.2%. In vitro drug release proved that HMSS–N=N–CS/DOX performed enzyme-responsive drug release. The grafted CS could increase the biocompatibility and stability and reduce the protein adsorption on HMSS. Gastrointestinal mucosa irritation and cell cytotoxicity results indicated the good biocompatibility of HMSS and HMSS–N=N–CS. Cellular uptake results indicated that the uptake of DOX was obviously increased after HMSS–N=N–CS/DOX was preincubated with a colonic enzyme mixture. HMSS–N=N–CS/DOX incubated with colon enzymes showed increased cytotoxicity, and its IC 50 value was three times lower than that of HMSS–N=N–CS/DOX group without colon enzymes. The present work lays the foundation for subsequent research on mesoporous carriers for oral colon-specific drug delivery.

Keywords: colon specific; delivery; enzyme responsive; drug; dox; hollow mesoporous

Journal Title: Nanoscale Research Letters
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.