LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Influence of Device Geometry and Imperfections on the Interpretation of Transverse Magnetic Focusing Experiments

Photo from wikipedia

Spatially separating electrons of different spins and efficiently generating spin currents are crucial steps towards building practical spintronics devices. Transverse magnetic focusing is a potential technique to accomplish both those… Click to show full abstract

Spatially separating electrons of different spins and efficiently generating spin currents are crucial steps towards building practical spintronics devices. Transverse magnetic focusing is a potential technique to accomplish both those tasks. In a material where there is significant Rashba spin–orbit interaction, electrons of different spins will traverse different paths in the presence of an external magnetic field. Experiments have demonstrated the viability of this technique by measuring conductance spectra that indicate the separation of spin-up and spin-down electrons. However the effect that the geometry of the leads has on these measurements is not well understood. By simulating an InGaAs-based transverse magnetic focusing device, we show that the resolution of features in the conductance spectra is affected by the shape, separation and width of the leads. Furthermore, the number of subbands occupied by the electrons in the leads affects the ratio between the amplitudes of the spin-split peaks in the spectra. We simulated devices with random onsite potentials and observed that transverse magnetic focusing devices are sensitive to disorder. Ultimately we show that careful choice and characterisation of device geometry are crucial for correctly interpreting the results of transverse magnetic focusing experiments.

Keywords: transverse magnetic; magnetic focusing; geometry; device geometry

Journal Title: Nanoscale Research Letters
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.