LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Drug response prediction model using a hierarchical structural component modeling method

BackgroundComponent-based structural equation modeling methods are now widely used in science, business, education, and other fields. This method uses unobservable variables, i.e., “latent” variables, and structural equation model relationships between… Click to show full abstract

BackgroundComponent-based structural equation modeling methods are now widely used in science, business, education, and other fields. This method uses unobservable variables, i.e., “latent” variables, and structural equation model relationships between observable variables. Here, we applied this structural equation modeling method to biologically structured data. To identify candidate drug-response biomarkers, we first used proteomic peptide-level data, as measured by multiple reaction monitoring mass spectrometry (MRM-MS), for liver cancer patients. MRM-MS is a highly sensitive and selective method for proteomic targeted quantitation of peptide abundances in complex biological samples.ResultsWe developed a component-based drug response prediction model, having the advantage that it first combines collapsed peptide-level data into protein-level information, facilitating subsequent biological interpretation. Our model also uses an alternating least squares algorithm, to efficiently estimate both coefficients of peptides and proteins. This approach also considers correlations between variables, without constraint, by a multiple testing problem. Using estimated peptide and protein coefficients, we selected significant protein biomarkers by permutation testing, resulting in our model for predicting liver cancer response to the tyrosine kinase inhibitor sorafenib.ConclusionsUsing data from a cohort of liver cancer patients, we then “fine-tuned” our model to successfully predict drug responses, as demonstrated by a high area under the curve (AUC) score. Such drug response prediction models may eventually find clinical translation in identifying individual patients likely to respond to specific therapies.

Keywords: drug; model; response prediction; drug response

Journal Title: BMC Bioinformatics
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.