LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

RAFTS3G: an efficient and versatile clustering software to analyses in large protein datasets

Photo from academic.microsoft.com

BackgroundClustering methods are essential to partitioning biological samples being useful to minimize the information complexity in large datasets. Tools in this context usually generates data with greed algorithms that solves… Click to show full abstract

BackgroundClustering methods are essential to partitioning biological samples being useful to minimize the information complexity in large datasets. Tools in this context usually generates data with greed algorithms that solves some Data Mining difficulties which can degrade biological relevant information during the clustering process. The lack of standardization of metrics and consistent bases also raises questions about the clustering efficiency of some methods. Benchmarks are needed to explore the full potential of clustering methods - in which alignment-free methods stand out - and the good choice of dataset makes it essentials.ResultsHere we present a new approach to Data Mining in large protein sequences datasets, the Rapid Alignment Free Tool for Sequences Similarity Search to Groups (RAFTS3G), a method to clustering aiming of losing less biological information in the processes of generation groups. The strategy developed in our algorithm is optimized to be more astringent which reflects increase in accuracy and sensitivity in the generation of clusters in a wide range of similarity. RAFTS3G is the better choice compared to three main methods when the user wants more reliable result even ignoring the ideal threshold to clustering.ConclusionIn general, RAFTS3G is able to group up to millions of biological sequences into large datasets, which is a remarkable option of efficiency in clustering. RAFTS3G compared to other “standard-gold” methods in the clustering of large biological data maintains the balance between the reduction of biological information redundancy and the creation of consistent groups. We bring the binary search concept applied to grouped sequences which shows maintaining sensitivity/accuracy relation and up to minimize the time of data generated with RAFTS3G process.

Keywords: information; clustering software; large protein; versatile clustering; rafts3g efficient; efficient versatile

Journal Title: BMC Bioinformatics
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.