LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

GPRED-GC: a Gene PREDiction model accounting for 5 ′- 3′ GC gradient

Gene is a key step in genome annotation. Ab initio gene prediction enables gene annotation of new genomes regardless of availability of homologous sequences. There exist a number of ab… Click to show full abstract

Gene is a key step in genome annotation. Ab initio gene prediction enables gene annotation of new genomes regardless of availability of homologous sequences. There exist a number of ab initio gene prediction tools and they have been widely used for gene annotation for various species. However, existing tools are not optimized for identifying genes with highly variable GC content. In addition, some genes in grass genomes exhibit a sharp 5 ′- 3′ decreasing GC content gradient, which is not carefully modeled by available gene prediction tools. Thus, there is still room to improve the sensitivity and accuracy for predicting genes with GC gradients. In this work, we designed and implemented a new hidden Markov model (HMM)-based ab initio gene prediction tool, which is optimized for finding genes with highly variable GC contents, such as the genes with negative GC gradients in grass genomes. We tested the tool on three datasets from Arabidopsis thaliana and Oryza sativa. The results showed that our tool can identify genes missed by existing tools due to the highly variable GC contents. GPRED-GC can effectively predict genes with highly variable GC contents without manual intervention. It provides a useful complementary tool to existing ones such as Augustus for more sensitive gene discovery. The source code is freely available at https://sourceforge.net/projects/gpred-gc/.

Keywords: highly variable; gene prediction; model; gradient; gene

Journal Title: BMC Bioinformatics
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.