Background Concept recognition is a term that corresponds to the two sequential steps of named entity recognition and named entity normalization, and plays an essential role in the field of… Click to show full abstract
Background Concept recognition is a term that corresponds to the two sequential steps of named entity recognition and named entity normalization, and plays an essential role in the field of bioinformatics. However, the conventional dictionary-based methods did not sufficiently addressed the variation of the concepts in actual use in literature, resulting in the particularly degraded performances in recognition of multi-token concepts. Results In this paper, we propose a concept recognition method of multi-token biological entities using neural models combined with literature contexts. The key aspect of our method is utilizing the contextual information from the biological knowledge-bases for concept normalization, which is followed by named entity recognition procedure. The model showed improved performances over conventional methods, particularly for multi-token concepts with higher variations. Conclusions We expect that our model can be utilized for effective concept recognition and variety of natural language processing tasks on bioinformatics.
               
Click one of the above tabs to view related content.