LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Analysis of Theileria orientalis draft genome sequences reveals potential species-level divergence of the Ikeda, Chitose and Buffeli genotypes

Photo by darren1303 from unsplash

BackgroundTheileria orientalis (Apicomplexa: Piroplasmida) has caused clinical disease in cattle of Eastern Asia for many years and its recent rapid spread throughout Australian and New Zealand herds has caused substantial… Click to show full abstract

BackgroundTheileria orientalis (Apicomplexa: Piroplasmida) has caused clinical disease in cattle of Eastern Asia for many years and its recent rapid spread throughout Australian and New Zealand herds has caused substantial economic losses to production through cattle deaths, late term abortion and morbidity. Disease outbreaks have been linked to the detection of a pathogenic genotype of T. orientalis, genotype Ikeda, which is also responsible for disease outbreaks in Asia. Here, we sequenced and compared the draft genomes of one pathogenic (Ikeda) and two apathogenic (Chitose, Buffeli) isolates of T. orientalis sourced from Australian herds.ResultsUsing de novo assembled sequences and a single nucleotide variant (SNV) analysis pipeline, we found extensive genetic divergence between the T. orientalis genotypes. A genome-wide phylogeny reconstructed to address continued confusion over nomenclature of this species displayed concordance with prior phylogenetic studies based on the major piroplasm surface protein (MPSP) gene. However, average nucleotide identity (ANI) values revealed that the divergence between isolates is comparable to that observed between other theilerias which represent distinct species. Analysis of SNVs revealed putative recombination between the Chitose and Buffeli genotypes and also between Australian and Japanese Ikeda isolates. Finally, to inform future vaccine studies, dN/dS ratios and surface location predictions were analysed. Six predicted surface protein targets were confirmed to be expressed during the piroplasm phase of the parasite by mass spectrometry.ConclusionsWe used whole genome sequencing to demonstrate that the T. orientalis Ikeda, Chitose and Buffeli variants show substantial genetic divergence. Our data indicates that future researchers could potentially consider disease-associated Ikeda and closely related genotypes as a separate species from non-pathogenic Chitose and Buffeli.

Keywords: buffeli genotypes; chitose buffeli; orientalis; analysis; divergence; ikeda

Journal Title: BMC Genomics
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.