BackgroundWith the developments of DNA sequencing technology, large amounts of sequencing data have been produced that provides unprecedented opportunities for advanced association studies between somatic mutations and cancer types/subtypes which… Click to show full abstract
BackgroundWith the developments of DNA sequencing technology, large amounts of sequencing data have been produced that provides unprecedented opportunities for advanced association studies between somatic mutations and cancer types/subtypes which further contributes to more accurate somatic mutation based cancer typing (SMCT). In existing SMCT methods however, the absence of high-level feature extraction is a major obstacle in improving the classification performance.ResultsWe propose DeepCNA, an advanced convolutional neural network (CNN) based classifier, which utilizes copy number aberrations (CNAs) and HiC data, to address this issue. DeepCNA first pre-process the CNA data by clipping, zero padding and reshaping. Then, the processed data is fed into a CNN classifier, which extracts high-level features for accurate classification. Experimental results on the COSMIC CNA dataset indicate that 2D CNN with both cell lines of HiC data lead to the best performance. We further compare DeepCNA with three widely adopted classifiers, and demonstrate that DeepCNA has at least 78% improvement of performance.ConclusionsThis paper demonstrates the advantages and potential of the proposed DeepCNA model for processing of somatic point mutation based gene data, and proposes that its usage may be extended to other complex genotype-phenotype association studies.
               
Click one of the above tabs to view related content.