LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Combining transcriptomics and metabolomics to reveal the underlying molecular mechanism of ergosterol biosynthesis during the fruiting process of Flammulina velutipes

Photo from wikipedia

BackgroundFlammulina velutipes has been recognized as a useful basidiomycete with nutritional and medicinal values. Ergosterol, one of the main sterols of F. velutipes is an important precursor of novel anticancer… Click to show full abstract

BackgroundFlammulina velutipes has been recognized as a useful basidiomycete with nutritional and medicinal values. Ergosterol, one of the main sterols of F. velutipes is an important precursor of novel anticancer and anti-HIV drugs. Therefore, many studies have focused on the biosynthesis of ergosterol and have attempted to upregulate its content in multiple organisms. Great progress has been made in understanding the regulation of ergosterol biosynthesis in Saccharomyces cerevisiae. However, this molecular mechanism in F. velutipes remains largely uncharacterized.ResultsIn this study, nine cDNA libraries, prepared from mycelia, young fruiting bodies and mature fruiting bodies of F. velutipes (three replicate sets for each stage), were sequenced using the Illumina HiSeqâ„¢ 4000 platform, resulting in at least 6.63 Gb of clean reads from each library. We studied the changes in genes and metabolites in the ergosterol biosynthesis pathway of F. velutipes during the development of fruiting bodies. A total of 13 genes (6 upregulated and 7 downregulated) were differentially expressed during the development from mycelia to young fruiting bodies (T1), while only 1 gene (1 downregulated) was differentially expressed during the development from young fruiting bodies to mature fruiting bodies (T2). A total of 7 metabolites (3 increased and 4 reduced) were found to have changed in content during T1, and 4 metabolites (4 increased) were found to be different during T2. A conjoint analysis of the genome-wide connection network revealed that the metabolites that were more likely to be regulated were primarily in the post-squalene pathway.ConclusionsThis study provides useful information for understanding the regulation of ergosterol biosynthesis and the regulatory relationship between metabolites and genes in the ergosterol biosynthesis pathway during the development of fruiting bodies in F. velutipes.

Keywords: ergosterol biosynthesis; biosynthesis; molecular mechanism; fruiting bodies

Journal Title: BMC Genomics
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.