Background Soybean mosaic virus (SMV) is one of the most devastating pathogens of soybean. MicroRNAs (miRNAs) are a class of non-coding RNAs (21–24 nucleotides) which are endogenously produced by the… Click to show full abstract
Background Soybean mosaic virus (SMV) is one of the most devastating pathogens of soybean. MicroRNAs (miRNAs) are a class of non-coding RNAs (21–24 nucleotides) which are endogenously produced by the plant host as part of a general gene expression regulatory mechanisms, but also play roles in regulating plant defense against pathogens. However, miRNA-mediated plant response to SMV in soybean is not as well documented. Result In this study, we analyzed 18 miRNA libraries, including three biological replicates from two soybean lines (Resistant and susceptible lines to SMV strain SC3 selected from the near-isogenic lines of Qihuang No. 1 × Nannong1138-2) after virus infection at three different time intervals (0 dpi, 7 dpi and 14 dpi). A total of 1,092 miRNAs, including 608 known miRNAs and 484 novel miRNAs were detected. Differential expression analyses identified the miRNAs profile changes during soybean-SMV interaction. Then, miRNAs potential target genes were predicted via data mining, and functional annotation was done by Gene Ontology (GO) analysis. The expression patterns of several miRNAs were validated by quantitative real-time PCR. We also validated the miRNA-target gene interaction by agrobacterium-mediated transient expression in Nicotiana benthamiana . Conclusion We have identified a large number of miRNAs and their target genes and also functional annotations. We found that multiple miRNAs were differentially expressed in the two lines and targeted a series of NBS-LRR resistance genes. It is worth mentioning that many of these genes exist in the previous fine-mapping interval of the resistance gene locus. Our study provides additional information on soybean miRNAs and an insight into the role of miRNAs during SMV-infection in soybean.
               
Click one of the above tabs to view related content.