BackgroundSalmonella enterica serovar Enteritidis (S. Enteritidis) has emerged as one of the most important food-borne pathogens for humans. Lipopolysaccharide (LPS), as a component of the outer membrane, is responsible for… Click to show full abstract
BackgroundSalmonella enterica serovar Enteritidis (S. Enteritidis) has emerged as one of the most important food-borne pathogens for humans. Lipopolysaccharide (LPS), as a component of the outer membrane, is responsible for the virulence and smooth-to-rough transition in S. Enteritidis. In this study, we screened S. Enteritidis signature-tagged transposon mutant library using monoclonal antibody against somatic O9 antigen (O9 MAb) and O9 factor rabbit antiserum to identify novel genes that are involved in smooth-to-rough transition.ResultsA total of 480 mutants were screened and one mutant with transposon insertion in rfbG gene had smooth-to-rough transition phenotype. In order to verify the role of rfbG gene, an rfbG insertion or deletion mutant was constructed using λ-Red recombination system. Phenotypic and biological analysis revealed that rfbG insertion or deletion mutants were similar to the wild-type strain in growth rate and biochemical properties, but the swimming motility was reduced. SE Slide Agglutination test and ELISA test showed that rfbG mutants do not stimulate animals to produce agglutinating antibody. In addition, the half-lethal dose (LD50) of the rfbG deletion mutant strain was 106.6 -fold higher than that of the parent strain in a mouse model when injected intraperitoneally.ConclusionsThese data indicate that the rfbG gene is involved in smooth-to-rough transition, swimming motility and virulence of S. Enteritidis. Furthermore, somatic O-antigen antibody-based approach to screen signature-tagged transposon mutants is feasible to clarify LPS biosynthesis and to find suitable markers in DIVA-vaccine research.
               
Click one of the above tabs to view related content.