LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Unraveling the expression of differentially expressed proteins and enzymatic activity in response to Phytophthora nicotianae across different flue-cured tobacco cultivars

Photo from wikipedia

Background Black shank disease caused by Phytophthora nicotianae is a serious threat to flue-cured tobacco production. Whole-plant resistance is characterized by the expression of a number of pathogenesis-related proteins, genes,… Click to show full abstract

Background Black shank disease caused by Phytophthora nicotianae is a serious threat to flue-cured tobacco production. Whole-plant resistance is characterized by the expression of a number of pathogenesis-related proteins, genes, and the activity of different defense-related enzymes. In this study, we investigated the activity of defense-related enzymes and expression of differentially expressed proteins through the iTRAQ technique across two flue-cured tobacco cultivars, i.e., K326 and Hongda, in response to the black shank pathogen. Results Results showed that the highest disease incidence was recorded in flue-cured tobacco cultivar Hongda compared with K326, which shows that Hongda is more susceptible to P. nicotianae than K326. A total of 4274 differentially expressed proteins were detected at 0 h and after 24 h, 72 h of post-inoculation with P. nicotianae . We found that 17 proteins induced after inoculation with P. nicotianae , including pathogenesis (5), photosynthesis (3), oxidative phosphorylation (6), tricarboxylic acid cycle (1), heat shock (1), and 14–3-3 (1) and were involved in the resistance of flue-cured tobacco against black shank disease. The expression of 5 pathogenesis-related proteins and the activities of defense-related enzymes (PPO, POD, SOD, and MDA) were significantly higher in the leaves of K326 than Hongda after inoculation with P. nicotianae . Conclusion These results provide new molecular insights into flue-cured tobacco responses to P. nicotianae. It is concluded that differences in protein expressions and defense-related enzymes play an important role in developing resistance in flue-cured tobacco cultivars against black shank disease.

Keywords: cured tobacco; differentially expressed; expressed proteins; flue cured

Journal Title: BMC Microbiology
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.