LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Expression of a bacterial 3-dehydroshikimate dehydratase (QsuB) reduces lignin and improves biomass saccharification efficiency in switchgrass (Panicum virgatum L.)

Photo by igorson from unsplash

Background Lignin deposited in plant cell walls negatively affects biomass conversion into advanced bioproducts. There is therefore a strong interest in developing bioenergy crops with reduced lignin content or altered… Click to show full abstract

Background Lignin deposited in plant cell walls negatively affects biomass conversion into advanced bioproducts. There is therefore a strong interest in developing bioenergy crops with reduced lignin content or altered lignin structures. Another desired trait for bioenergy crops is the ability to accumulate novel bioproducts, which would enhance the development of economically sustainable biorefineries. As previously demonstrated in the model plant Arabidopsis, expression of a 3-dehydroshikimate dehydratase in plants offers the potential for decreasing lignin content and overproducing a value-added metabolic coproduct (i.e., protocatechuate) suitable for biological upgrading. Results The 3-dehydroshikimate dehydratase QsuB from Corynebacterium glutamicum was expressed in the bioenergy crop switchgrass ( Panicum virgatum L.) using the stem-specific promoter of an O-methyltransferase gene ( pShOMT ) from sugarcane. The activity of pShOMT was validated in switchgrass after observation in-situ of beta-glucuronidase (GUS) activity in stem nodes of plants carrying a pShOMT::GUS fusion construct. Under controlled growth conditions, engineered switchgrass lines containing a pShOMT::QsuB construct showed reductions of lignin content, improvements of biomass saccharification efficiency, and accumulated higher amount of protocatechuate compared to control plants. Attempts to generate transgenic switchgrass lines carrying the QsuB gene under the control of the constitutive promoter pZmUbi-1 were unsuccessful, suggesting possible toxicity issues associated with ectopic QsuB expression during the plant regeneration process. Conclusion This study validates the transfer of the QsuB engineering approach from a model plant to switchgrass. We have demonstrated altered expression of two important traits: lignin content and accumulation of a co-product. We found that the choice of promoter to drive QsuB expression should be carefully considered when deploying this strategy to other bioenergy crops. Field-testing of engineered QsuB switchgrass are in progress to assess the performance of the introduced traits and agronomic performances of the transgenic plants.

Keywords: lignin content; qsub; plant; switchgrass; dehydroshikimate dehydratase; expression

Journal Title: BMC Plant Biology
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.