LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Phylogenetic analysis and development of molecular markers for five medicinal Alpinia species based on complete plastome sequences

Photo from wikipedia

Background Alpinia species are widely used as medicinal herbs. To understand the taxonomic classification and plastome evolution of the medicinal Alpinia species and correctly identify medicinal products derived from Alpinia… Click to show full abstract

Background Alpinia species are widely used as medicinal herbs. To understand the taxonomic classification and plastome evolution of the medicinal Alpinia species and correctly identify medicinal products derived from Alpinia species, we systematically analyzed the plastome sequences from five Alpinia species. Four of the Alpinia species: Alpinia galanga (L.) Willd., Alpinia hainanensis K.Schum., Alpinia officinarum Hance, and Alpinia oxyphylla Miq., are listed in the Chinese pharmacopeia. The other one, Alpinia nigra (Gaertn.) Burtt, is well known for its medicinal values. Results The four Alpinia species: A. galanga , A. nigra , A. officinarum , and A. oxyphylla , were sequenced using the Next-generation sequencing technology. The plastomes were assembled using Novoplasty and annotated using CPGAVAS2. The sizes of the four plastomes range from 160,590 bp for A. galanga to 164,294 bp for A. nigra , and display a conserved quadripartite structure. Each of the plastomes encodes a total of 111 unique genes, including 79 protein-coding, 28 tRNA, and four rRNA genes. In addition, 293–296 SSRs were detected in the four plastomes, of which the majority are mononucleotides Adenine/Thymine and are found in the noncoding regions. The long repeat analysis shows all types of repeats are contained in the plastomes, of which palindromic repeats occur most frequently. The comparative genomic analyses revealed that the pair of the inverted repeats were less divergent than the single-copy region. Analysis of sequence divergence on protein-coding genes showed that two genes ( acc D and ycf 1) had undergone positive selection. Phylogenetic analysis based on coding sequence of 77 shared plastome genes resolves the molecular phylogeny of 20 species from Zingiberaceae. In particular, molecular phylogeny of four sequenced Alpinia species ( A. galanga , A. nigra , A. officinarum , and A. oxyphylla ) based on the plastome and nuclear sequences showed congruency. Furthermore, a comparison of the four newly sequenced Alpinia plastomes and one previously reported Alpinia plastomes (accession number: NC_048461) reveals 59 highly divergent intergenic spacer regions. We developed and validated two molecular markers Alpp and Alpr, based on two regions: pet N- psb M and psa J- rpl 33, respectively. The discrimination success rate was 100 % in validation experiments. Conclusions The results from this study will be invaluable for ensuring the effective and safe uses of Alpinia medicinal products and for the exploration of novel Alpinia species to improve human health.

Keywords: medicinal alpinia; alpinia species; alpinia; plastome sequences; phylogenetic analysis

Journal Title: BMC Plant Biology
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.