LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Proceedings of the 3rd annual Acute Cardiac Unloading and REcovery (A-CURE) symposium

Photo from wikipedia

Foreword Welcome to this special supplement devoted to the proceedings of the 3rd Annual Acute Cardiac Unloading and REcovery (A-CURE) Working Group meeting, which was held on November 9, 2018,… Click to show full abstract

Foreword Welcome to this special supplement devoted to the proceedings of the 3rd Annual Acute Cardiac Unloading and REcovery (A-CURE) Working Group meeting, which was held on November 9, 2018, in Chicago, USA. The A-CURE Working Group is comprised of leading academic experts in clinical and basic cardiac research who are dedicated to advancing the science and clinical application of acute cardiac unloading. This meeting brought together experts from multiple disciplines, including interventional cardiologists, heart failure specialists, cardiac surgeons, molecular biologists, and biomedical engineers. The 2018 Symposium featured talks and posters that highlighted cutting-edge advances in the field of acute cardiac unloading that have taken place since the conclusion of the 2017 A-CURE Symposium in Barcelona, Spain. Cardiac disease states such as myocardial infarction (MI), myocarditis, cardiomyopathy, and cardiogenic shock impair the ability of the heart to pump blood, resulting in end organ failure and, ultimately, death. Pharmacological therapies for these disease states aim to maintain cardiac output but, in the process, impose further stress on the heart. Additional treatment strategies are needed. The A-CURE Symposium focused on the basic science and clinical application of new technologies. Acute cardiac unloading decreases myocardial oxygen consumption and maximizes the ability of the heart to rest and recover after damage. Mechanical unloading employs percutaneous ventricular assist devices such as the FDA-approved Impella family of devices, to decrease the physical workload of the heart. This supplement features a number of presentations covering a broad range of subjects related to cardiac unloading. The first session of the symposium was devoted to the advances in basic and preclinical science of acute unloading and myocardial salvage. Topics discussed during the presentations ranged from influence of acute unloading on intercellular and inter-organ communication through exosome-based signaling to preservation of mitochondrial structure and function post-myocardial infarction (MI). New models of cardiogenic shock and investigations demonstrating enhanced collateral blood flow with acute unloading to reduce infarct size were also discussed. In the keynote lecture, James Udelson focused on the physiologic and pathologic basis of left ventricular remodeling and the lessons learned from clinical trials in the field of chronic heart failure. The second session of the symposium focused on clinical research programs of cardiac unloading. Wide spectrum of clinical studies presented included cardio-renal system interaction with effect of hemodynamic support on acute kidney injury, outcomes associated with adoption of standardized protocol for treatment in cardiogenic shock, and the first-in-man experience with the new Impella 5.5 heart pump. The afternoon’s presentations had a stronger focus on the clinical translation of left ventricular (LV) unloading. The temporal trends and patterns of the incidence of new heart failure (HF) post-MI and the potential of cardiac cell transplantation to fashion an external auxiliary circulatory pump were presented. The meeting concluded with two * Correspondence: [email protected] Abiomed, Inc., Danvers, MA, USA Full list of author information is available at the end of the article

Keywords: symposium; acute; heart; cardiac unloading; cure; acute cardiac

Journal Title: BMC Cardiovascular Disorders
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.