Background The prevalent resurgence of pertussis has recently become a critical public health problem worldwide. To understand pertussis pathogenesis and the host response to both the pathogen and vaccines, a… Click to show full abstract
Background The prevalent resurgence of pertussis has recently become a critical public health problem worldwide. To understand pertussis pathogenesis and the host response to both the pathogen and vaccines, a suitable pertussis animal model, particularly a non-human primate model, is necessary. Recently, a non-human primate pertussis model was successfully established with baboons. Rhesus macaques have been shown to be ideal animal models for several infectious diseases, but a model of infectious pertussis has not been established in these organisms. Studies on rhesus macaque models of pertussis were performed in the 1920s–1930s, but limited experimental details are available. Recent monkey pertussis models have not been successful because the typical clinical symptoms and transmission have not been achieved. Methods In the present study, infant rhesus macaques were challenged with Bordetella pertussis ( B.p) using an aerosol method to evaluate the feasibility of this system as an animal model of pertussis. Results Upon aerosol infection, monkeys infected with the recently clinically isolated B.p strain 2016-CY-41 developed the typical whooping cough, leukocytosis, bacteria-positive nasopharyngeal wash (NPW), and interanimal transmission of pertussis. Both systemic and mucosal humoral responses were induced by B.p . Conclusion These results demonstrate that a model of pertussis was successfully established in infant rhesus macaques. This model provides a valuable platform for research on pertussis pathogenesis and evaluation of vaccine candidates.
               
Click one of the above tabs to view related content.