BackgroundFOXL2 gene mutations cause blepharophimosis-ptosis-epicanthus inversus syndrome (BPES) and may be associated with premature ovarian insufficiency (POI). Two types of BPES were described in the literature. BPES type 2 is… Click to show full abstract
BackgroundFOXL2 gene mutations cause blepharophimosis-ptosis-epicanthus inversus syndrome (BPES) and may be associated with premature ovarian insufficiency (POI). Two types of BPES were described in the literature. BPES type 2 is a simple association of inherited developmental defects of the eyelid area, while in type 1 female patients additionally suffer from POI. The following case study is the first report of endocrine impairments typical for menopausal transition in young female with NG_012454.1:g.138665342G > A, c.223C > T p.(Leu75Phe), mutation in FOXL2 gene. This mutation has been reported in the literature before, however until now, it was never linked to BPES type 1.Case presentationAn 18-year-old nulliparous woman suspected of secondary amenorrhea was referred to our Endocrinology Outpatient Clinic. Blood tests revealed decreased levels of AMH (anti-Mullerian hormone) and increased levels of gonadotropins, suggesting menopausal transition. Her past medical history was remarkable for several ophthalmic defects that has required surgical interventions. BPES syndrome had not been suspected before, although the patient had reported a similar phenotype occurring in her father, sister and half-sister. Venous blood samples were collected from the female proband and from her three family members. Whole-exome sequencing and deep amplicon sequencing were performed. A potential pathogenic variant in the FOXL2 gene was revealed. Namely, the c.223C > T p.(Leu75Phe) missense variant was detected.ConclusionsThe authors found mutations, c.223C > T p.(Leu75Phe) in the FOXL2 gene in a young woman with hormonal disorders suggesting menopausal transition. These results indicate that the possibility of different phenotypes should be considered in patients with a similar genetic mutation.
               
Click one of the above tabs to view related content.