LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

β-arrestin1-mediated acetylation of Gli1 regulates Hedgehog/Gli signaling and modulates self-renewal of SHH medulloblastoma cancer stem cells

Photo by art_almighty from unsplash

BackgroundAberrant Sonic Hedgehog/Gli (Hh/Gli) signaling pathway is a critical regulator of Sonic hedgehog medulloblastoma (SHH-MB). Cancer stem cells (CSCs), thought to be largely responsible for tumor initiation, maintenance, dissemination and… Click to show full abstract

BackgroundAberrant Sonic Hedgehog/Gli (Hh/Gli) signaling pathway is a critical regulator of Sonic hedgehog medulloblastoma (SHH-MB). Cancer stem cells (CSCs), thought to be largely responsible for tumor initiation, maintenance, dissemination and relapse, have been identified in SHH-MB. Since we previously demonstrated that Hh/Gli signaling controls CSCs features in SHH-MB and that in these tumors miR-326 is down regulated, here we investigated whether there is a functional link between Hh/Gli signaling and miR-326.MethodsWe evaluated β-arrestin1 (Arrb1) and its intragenic miR-326 levels in CSCs derived from SHH-MB. Subsequently, we modulated the expression of Arrb1 and miR-326 in CSCs in order to gain insight into their biological role. We also analyzed the mechanism by which Arrb1 and miR-326 control Hh/Gli signaling and self-renewal, using luciferase and protein immunoprecipitation assays.ResultsLow levels of Arrb1 and miR-326 represent a feature of CSCs derived from SHH-MB. We observed that re-expression of Arrb1 and miR-326 inhibits Hh/Gli signaling pathway at multiple levels, which cause impaired proliferation and self-renewal, accompanied by down regulation of Nanog levels. In detail, miR-326 negatively regulates two components of the Hh/Gli pathway the receptor Smoothened (Smo) and the transcription factor Gli2, whereas Arrb1 suppresses the transcriptional activity of Gli1, by potentiating its p300-mediated acetylation.ConclusionsOur results identify a new molecular mechanism involving miR-326 and Arrb1 as regulators of SHH-MB CSCs. Specifically, low levels of Arrb1 and miR-326 trigger and maintain Hh/Gli signaling and self-renewal.

Keywords: arrb1 mir; mir 326; self renewal; cancer; gli signaling

Journal Title: BMC Cancer
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.