Background The Taylor Spatial Frame (TSF) has been widely used for tibial fracture. However, traditional radiographic measurement method is complicated and the reduction accuracy is affected by various factors. The… Click to show full abstract
Background The Taylor Spatial Frame (TSF) has been widely used for tibial fracture. However, traditional radiographic measurement method is complicated and the reduction accuracy is affected by various factors. The purpose of this study was to propose a new marker- three dimensional (3D) measurement method and determine the differences of reduction outcomes, if any, between marker-3D measurement method and traditional radiographic measurement in the TSF treatment. Methods Forty-one patients with tibial fracture treated by TSF in our institution were retrospectively analyzed from January 2016 to June 2019, including 21 patients in the marker-3D measurement group (experimental group) and 20 patients in the traditional radiographic measurement group (control group). In the experimental group, 3D reconstruction with 6 markers installed on the TSF was performed to determine the electronic prescription. In the control group, the anteroposterior (AP) and lateral radiographs were performed for the traditional parameter measurements. The effectiveness was evaluated by the residual displacement deformity (RDD) and residual angle deformity (RAD) in the coronal and sagittal plane, according to the AP and lateral X-rays after reduction. Results All patients achieved functional reduction. The residual RDD in AP view was 0.5 (0, 1.72) mm in experimental group and 1.74 (0.43, 3.67) mm in control group. The residual RAD in AP view was 0 (0, 1.25) ° in experimental group and 1.25 (0.62, 1.95) °in control group. As for the lateral view, the RDD was 0 (0, 1.22) mm in experimental group and 2.02 (0, 3.74) mm in control group, the RAD was 0 (0, 0) ° in experimental group and 1.42 (0, 1.93) ° in control group. Significant differences in all above comparisons were observed between the two groups (AP view RDD: P = 0.024, RAD: P = 0.020; Lateral view RDD: P = 0.016, RAD: P = 0.004). Conclusions The present study introduced a marker-3D measurement method to complement the current TSF treatment. This method avoids the manual measurement error and improves the accuracy of fracture reduction, providing potential advantages of bone healing and function rehabilitation.
               
Click one of the above tabs to view related content.