LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Vitrification for cryopreservation of 2D and 3D stem cells culture using high concentration of cryoprotective agents

Photo from wikipedia

Background Vitrification is the most promising technology for successful cryopreservation of living organisms without ice crystal formation. However, high concentrations (up to ~ 6–8 M) of cryoprotective agents (CPAs) used in stem… Click to show full abstract

Background Vitrification is the most promising technology for successful cryopreservation of living organisms without ice crystal formation. However, high concentrations (up to ~ 6–8 M) of cryoprotective agents (CPAs) used in stem cell induce osmotic and metabolic injuries. Moreover, the application of conventional slow-freezing methods to cultures of 3-D organoids of stem cells in various studies, is limited by their size. Results In this study, we evaluated the effect of high concentrations of CPAs including cytotoxicity and characterized human mesenchymal stem cell (MSC) at single cell level. The cell viability, cellular damage, and apoptotic mechanisms as well as the proliferation capacity and multipotency of cells subjected to vitrification were similar to those in the slow-freezing group. Furthermore, we identified the possibility of vitrification of size-controlled 3-D spheroids for cryopreservation of organoid with high survivability. Conclusions Our results demonstrate successful vitrification of both single cell and spheroid using high concentration of CPAs in vitro without cytotoxicity.

Keywords: cell; cryopreservation; vitrification; stem cells; cryoprotective agents

Journal Title: BMC Biotechnology
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.