Background Parathyroid hormone-related protein (PTHrP) plays an important role in many physiological processes, including bone regeneration. The function of PTHrP is similar to PTH. It promotes osteogenic differentiation in MC3T3-E1… Click to show full abstract
Background Parathyroid hormone-related protein (PTHrP) plays an important role in many physiological processes, including bone regeneration. The function of PTHrP is similar to PTH. It promotes osteogenic differentiation in MC3T3-E1 cells. The aim of this study was to investigate whether PTHrP might have odontogenic differentiation ability in human dental pulp cells (hDPCs). Methods The viability of hDPCs after stimulation with PTHrP was measured. Real-time polymerase chain reaction and Western blot analysis were performed to evaluate the expression levels of odontogenic markers and activation of protein kinase B (PKB/AKT), extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK), and p38 mitogen-activated protein kinase (MAPK). To evaluate mineralized nodule formation, alkaline phosphatase (ALP) staining and alizarin red S staining were performed. Results PTHrP promoted odontogenic differentiation as evidenced by the formation of mineralized nodules, the induction of ALP activity, and the upregulation of odontogenic markers (dentin sialophosphoprotein and dentin matrix protein-1). The phosphorylation of AKT, ERK, JNK, and p38 was increased by PTHrP. However, an AKT inhibitor (LY294002), an ERK inhibitor (U0126), a JNK inhibitor (SP600125), and a p38 inhibitor (SB203580) inhibited the increase of mineralization induced by PTHrP. Conclusion The present study revealed that PTHrP could promote odontogenic differentiation and mineralization through activating the AKT, ERK, JNK, and p38 signaling pathways. These results provide novel insights into the odontogenic action of PTHrP.
               
Click one of the above tabs to view related content.