LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Genome-scale CRISPR screening at high sensitivity with an empirically designed sgRNA library

Photo from wikipedia

Background In recent years, large-scale genetic screens using the CRISPR/Cas9 system have emerged as scalable approaches able to interrogate gene function with unprecedented efficiency and specificity in various biological contexts.… Click to show full abstract

Background In recent years, large-scale genetic screens using the CRISPR/Cas9 system have emerged as scalable approaches able to interrogate gene function with unprecedented efficiency and specificity in various biological contexts. By this means, functional dependencies on both the protein-coding and noncoding genome of numerous cell types in different organisms have been interrogated. However, screening designs vary greatly and criteria for optimal experimental implementation and library composition are still emerging. Given their broad utility in functionally annotating genomes, the application and interpretation of genome-scale CRISPR screens would greatly benefit from consistent and optimal design criteria. Results We report advantages of conducting viability screens in selected Cas9 single-cell clones in contrast to Cas9 bulk populations. We further systematically analyzed published CRISPR screens in human cells to identify single-guide (sg) RNAs with consistent high on-target and low off-target activity. Selected guides were collected in a novel genome-scale sgRNA library, which efficiently identifies core and context-dependent essential genes. Conclusion We show how empirically designed libraries in combination with an optimized experimental design increase the dynamic range in gene essentiality screens at reduced library coverage.

Keywords: genome scale; crispr; sgrna library; empirically designed; scale crispr

Journal Title: BMC Biology
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.