Constitutive and inducible defenses protect the respiratory tract from bacterial infection. The objective of this study was to characterize the response to an aerosolized lysate of killed bacteria, as a… Click to show full abstract
Constitutive and inducible defenses protect the respiratory tract from bacterial infection. The objective of this study was to characterize the response to an aerosolized lysate of killed bacteria, as a basis for studying the regulation and in vivo effects of these inducible innate immune responses. Bacterial lysate consisting of heat-killed and sonicated Staphylococcus aureus and Escherichia coli was aerosolized to 6 calves and systemic and pulmonary innate immune and inflammatory responses were measured in the first 24 h relative to baseline. Evaluated parameters included clinical parameters (body temperature and heart and respiratory rates), blood acute phase proteins and leukocyte counts, and leukocytes and proteins in bronchoalveolar lavage fluid. Mild clinical signs with increased heart rates and rectal temperatures developed following administration of the lysate, with resolution by 24 h. Serum haptoglobin and plasma fibrinogen concentrations were elevated at 24 h relative to baseline. Bronchoalveolar lavage fluid (BALF) had increased cellularity and increased proportion of neutrophils, as well as higher concentrations of interleukin (IL)-8, IL-10 and total protein at 24 h relative to baseline. Mass spectrometry identified 965 unique proteins in BALF: 19 proteins were increased and 26 proteins were decreased relative to baseline. The upregulated proteins included those involved in innate immunity including activation of complement, neutrophils and platelets. At postmortem examination, calves receiving higher doses of lysate had areas of lobular consolidation and interlobular edema. Histologically, neutrophils were present within bronchioles and to a lesser extent within alveoli. Calves receiving highest doses of lysate had patchy areas of neutrophils, hemorrhage and hyaline membranes within alveoli. Aerosolization of bacterial lysate stimulated an innate immune response in lungs and airways, with alveolar damage observed at higher doses. Such a stimulus could be of value for investigating the effects of inducible innate immune responses on occurrence of disease, or for evaluating how stress, drugs or genetics affect these dynamic responses of the respiratory tract.
               
Click one of the above tabs to view related content.