LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

The diagnostic yield of intellectual disability: combined whole genome low-coverage sequencing and medical exome sequencing

Photo from wikipedia

Background Intellectual disability (ID) is a heterogeneous neurodevelopmental disorder with a complex genetic underpinning in its etiology. Chromosome microarray (CMA) is recommended as the first-tier diagnostic test for ID due… Click to show full abstract

Background Intellectual disability (ID) is a heterogeneous neurodevelopmental disorder with a complex genetic underpinning in its etiology. Chromosome microarray (CMA) is recommended as the first-tier diagnostic test for ID due to high detection rate of copy number variation (CNV). Methods To identify an appropriate clinical detection scheme for ID in Han Chinese patients, whole genome low-coverage sequencing was performed as the first-tier diagnostic test, and medical exome sequencing (MES) as the second-tier diagnostic test for patients with negative results of CNVs. Results A total of 19 pathogenic CNVs in 16/95(16.84%) ID patients and 10 pathogenic single-nucleotide variations (SNVs), including 6 novel mutations in 8/95(8.42%) ID patients were identified on whom no pathogenic CNVs were discovered. The detection rate of CNVs in ID with multiple congenital anomalies (MCA) subgroup was significantly higher than ID with autism spectrum disorders and other IDs subgroups. And the single-nucleotide variations showed a higher occurrence rate in the other IDs subgroup. Conclusions There were differences in the diagnostic yields of different variation types among the three ID subgroups. Our findings provided a new perspective on appropriate clinical detection scheme in different ID subgroups based on statistically significant differences among the three ID subgroups. The application of whole genome low-coverage sequencing as the first-tier diagnostic test for ID with MCA subgroup and MES as the first-tier diagnostic test for other ID subgroup was considered as an efficient clinical detection scheme.

Keywords: low coverage; whole genome; diagnostic test; coverage sequencing; genome low; tier diagnostic

Journal Title: BMC Medical Genomics
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.