LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Non-linear parameters of specific resistance loops to characterise obstructive airways diseases

Photo by enchaxcreative from unsplash

BackgroundSpecific resistance loops appear in different shapes influenced by different resistive properties of the airways, yet their descriptive ability is compressed to a single parameter - its slope. We aimed… Click to show full abstract

BackgroundSpecific resistance loops appear in different shapes influenced by different resistive properties of the airways, yet their descriptive ability is compressed to a single parameter - its slope. We aimed to develop new parameters reflecting the various shapes of the loop and to explore their potential in the characterisation of obstructive airways diseases.MethodsOur study included 134 subjects: Healthy controls (N = 22), Asthma with non-obstructive lung function (N = 22) and COPD of all disease stages (N = 90). Different shapes were described by geometrical and second-order transfer function parameters.ResultsOur parameters demonstrated no difference between asthma and healthy controls groups, but were significantly different (p < 0.0001) from the patients with COPD. Grouping mild COPD subjects by an open or not-open shape of the resistance loop revealed significant differences of loop parameters and classical lung function parameters. Multiple logistic regression indicated RV/TLC as the only predictor of loop opening with OR = 1.157, 95% CI (1.064–1.267), p-value = 0.0006 and R2 = 0.35. Inducing airway narrowing in asthma gave equal shape measures as in COPD non-openers, but with a decreased slope (p < 0.0001).ConclusionThis study introduces new parameters calculated from the resistance loops which may correlate with different phenotypes of obstructive airways diseases.

Keywords: linear parameters; non linear; resistance loops; resistance; airways diseases; obstructive airways

Journal Title: Respiratory Research
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.