LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Identification and immobilization of a novel cold-adapted esterase, and its potential for bioremediation of pyrethroid-contaminated vegetables

Photo by mihaly_koles from unsplash

BackgroundPyrethroids are potentially harmful to living organisms and ecosystems. Thus, concerns have been raised about pyrethroid residues and their persistence in agricultural products. To date, although several pyrethroid-hydrolyzing enzymes have… Click to show full abstract

BackgroundPyrethroids are potentially harmful to living organisms and ecosystems. Thus, concerns have been raised about pyrethroid residues and their persistence in agricultural products. To date, although several pyrethroid-hydrolyzing enzymes have been cloned, very few reports are available on pyrethroid-hydrolyzing enzymes with cold adaptation, high hydrolytic activity and good reusability, indispensable properties in practical bioremediation of pyrethroid-contaminated vegetables.ResultsHere, a novel gene (est684) encoding pyrethroid-hydrolyzing esterase was isolated from the Mao-tofu metagenome for the first time. Est684 encoded a protein of 227 amino acids and was expressed in Escherichia coli BL21 (DE3) in soluble form. The optimum temperature was 18 °C. It maintained 46.1% of activity at 0 °C and over 50% of its maximal activity at 4–35 °C. With the goal of enhancing stability and recycling biocatalysts, we used mesoporous silica SBA-15 as a nanometer carrier for the efficient immobilization of Est684 by the absorption method. The best conditions were an esterase-to-silica ratio of 0.96 mg/g (w/w) and an adsorption time of 30 min at 10 °C. Under these conditions, the recovery of enzyme activity was 81.3%. A large improvement in the thermostability of Est684 was achieved. The half-life (T1/2) of the immobilized enzyme at 35 °C was 6 h, 4 times longer than the soluble enzyme. Interestingly, the immobilized Est684 had less loss in enzyme activity up to 12 consecutive cycles, and it retained nearly 54% of its activity after 28 cycles, indicating excellent operational stability. Another noteworthy characteristic was its high catalytic activity. It efficiently hydrolyzed cyhalothrin, cypermethrin, and fenvalreate in pyrethroid-contaminated cucumber within 5 min, reaching over 85% degradation efficiency after four cycles.ConclusionsA novel cold-adapted pyrethroid-hydrolyzing esterase was screened from the Mao-tofu metagenome. This report is the first on immobilizing pyrethroid-hydrolyzing enzyme on mesoporous silica. The immobilized enzyme with high hydrolytic activity and outstanding reusability has a remarkable potential for bioremediation of pyrethroid-contaminated vegetables, and it is proposed as an industrial enzyme.

Keywords: pyrethroid hydrolyzing; pyrethroid contaminated; pyrethroid; contaminated vegetables; activity; bioremediation pyrethroid

Journal Title: Microbial Cell Factories
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.