LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Engineering Pseudomonas putida for isoprenoid production by manipulating endogenous and shunt pathways supplying precursors

Photo by thisisengineering from unsplash

BackgroundThe soil bacterium Pseudomonas putida is a promising platform for the production of industrially valuable natural compounds. In the case of isoprenoids, the availability of biosynthetic precursors is a major… Click to show full abstract

BackgroundThe soil bacterium Pseudomonas putida is a promising platform for the production of industrially valuable natural compounds. In the case of isoprenoids, the availability of biosynthetic precursors is a major limiting factor. In P. putida and most other bacteria, these precursors are produced from pyruvate and glyceraldehyde 3-phosphate by the methylerythritol 4-phosphate (MEP) pathway, whereas other bacteria synthesize the same precursors from acetyl-CoA using the unrelated mevalonate (MVA) pathway.ResultsHere we explored different strategies to increase the supply of isoprenoid precursors in P. putida cells using lycopene as a read-out. Because we were not aiming at producing high isoprenoid titers but were primarily interested in finding ways to enhance the metabolic flux to isoprenoids, we engineered the well-characterized P. putida strain KT2440 to produce low but detectable levels of lycopene under conditions in which MEP pathway steps were not saturated. Then, we compared lycopene production in cells expressing the Myxococcus xanthus MVA pathway genes or endogenous MEP pathway genes (dxs, dxr, idi) under the control of IPTG-induced and stress-regulated promoters. We also tested a shunt pathway producing isoprenoid precursors from ribulose 5-phosphate using a mutant version of the Escherichia coli ribB gene.ConclusionsThe most successful combination led to a 50-fold increase in lycopene levels, indicating that P. putida can be successfully engineered to substantially increase the supply of metabolic substrates for the production of industrially valuable isoprenoids.

Keywords: mep pathway; engineering pseudomonas; production; pseudomonas putida; putida

Journal Title: Microbial Cell Factories
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.