LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

A novel NF-κB regulator encoded by circPLCE1 inhibits colorectal carcinoma progression by promoting RPS3 ubiquitin-dependent degradation

Photo by bermixstudio from unsplash

Background Constitutive activation of nuclear factor-κB (NF-κB) signaling plays a key role in the development and progression of colorectal carcinoma (CRC). However, the underlying mechanisms of excessive activation of NF-κB… Click to show full abstract

Background Constitutive activation of nuclear factor-κB (NF-κB) signaling plays a key role in the development and progression of colorectal carcinoma (CRC). However, the underlying mechanisms of excessive activation of NF-κB signaling remain largely unknown. Methods We used high throughput RNA sequencing to identify differentially expressed circular RNAs (circRNAs) between normal human intestinal epithelial cell lines and CRC cell lines. The identification of protein encoded by circPLCE1 was performed using LC–MS. The function of novel protein was validated in vitro and in vivo by gain or loss of function assays. Mechanistic results were concluded by immunoprecipitation analyses. Results A novel protein circPLCE1-411 encoded by circular RNA circPLCE1 was identified as a crucial player in the NF-κB activation of CRC. Mechanistically, circPLCE1-411 promoted the ubiquitin-dependent degradation of the critical NF-κB regulator RPS3 via directly binding the HSP90α/RPS3 complex to facilitate the dissociation of RPS3 from the complex, thereby reducing NF-κB nuclear translocation in CRC cells. Functionally, circPLCE1 inhibited tumor proliferation and metastasis in CRC cells, as well as patient-derived xenograft and orthotopic xenograft tumor models. Clinically, circPLCE1 was downregulated in CRC tissues and correlated with advanced clinical stages and poor survival. Conclusions circPLCE1 presents an epigenetic mechanism which disrupts NF-κB nuclear translocation and serves as a novel and promising therapeutic target and prognostic marker.

Keywords: colorectal carcinoma; ubiquitin dependent; rps3; crc; dependent degradation; encoded circplce1

Journal Title: Molecular Cancer
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.