BackgroundHepatitis B virus (HBV) infection remains a global health issue associated with substantial morbidity and mortality. Serum apolipoprotein C3 (ApoC3) and apolipoprotein A5 (ApoA5) levels were decreased in chronic hepatitis… Click to show full abstract
BackgroundHepatitis B virus (HBV) infection remains a global health issue associated with substantial morbidity and mortality. Serum apolipoprotein C3 (ApoC3) and apolipoprotein A5 (ApoA5) levels were decreased in chronic hepatitis B (CHB) patients, however the relationship between ApoC3 or ApoA5 and HBV DNA load remains elusive.MethodsA total of 384 CHB patients including 194 HBsAg(+) HBeAg(−) and 190 HBsAg(+) HBeAg(+) and 154 healthy individuals were recruited in our study. Serum levels of alanine aminotransferase (ALT), aspartate transaminase (AST), total cholesterol (Chol), triglycerides (TG), apolipoprotein A1 (ApoA1), apolipoprotein B (ApoB), high-density lipoproteins cholesterol (HDL-C), low-density lipoproteins cholesterol (LDL-C) and lipoprotein a (Lpa) were examined in an automatic biochemical analyzer. Apolipoprotein A5 (ApoA5) and apolipoprotein C3 (ApoC3) were detected via ELISA.ResultsSerum ApoA1, ApoB, ApoC3 and ApoA5 levels were reduced in CHB patients. In HBeAg(−) CHB patients, plasma ApoC3 levels were negatively associated with HBV DNA load (r = 0.219, P < 0.001). But no correlation between ApoA5 and HBV DNA load was observed in CHB patients.ConclusionsThese data showed that HBV infection inhibits lipid metabolism and ApoC3 is negatively associated with HBV DNA load in HBeAg (−) CHB patients. These findings provided new evidence about the link between ApoC3-related lipid metabolism and immune response.
               
Click one of the above tabs to view related content.