LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Curcumin primed ADMSCs derived small extracellular vesicle exert enhanced protective effects on osteoarthritis by inhibiting oxidative stress and chondrocyte apoptosis

Photo by kellysikkema from unsplash

Osteoarthritis (OA) is a common joint disease caused by progressive articular cartilage degeneration and destruction. Currently, there are no disease-modifying agents officially approved for OA patients. In this study, curcumin… Click to show full abstract

Osteoarthritis (OA) is a common joint disease caused by progressive articular cartilage degeneration and destruction. Currently, there are no disease-modifying agents officially approved for OA patients. In this study, curcumin was loaded into adipose tissue-derived mesenchymal stem cells (ADMSCs)-derived small extracellular vesicle (ADMSCs-sEV) to synergistically exert chondro-protective effects in vitro and in vivo. We found curcumin primed ADMSCs derived sEV (sEV-CUR) exhibited an enhanced protective effect compared with free curcumin and ADMSCs-sEV in TBHP-induced chondrocytes. Moreover, our study demonstrated sEV-CUR more effectively down-regulated TBHP-induced oxidative stress and chondrocyte apoptosis in vitro. In OA mice model, our results indicated that sEV-CUR showed an improved cartilage protection, as biweekly intra-articular injection of sEV-CUR more efficaciously alleviated oxidative stress and chondrocyte apoptosis in OA cartilage. Overall, our findings showed sEV-CUR exhibited enhanced chondro-protective effects and holds great potential on the recovery of articular cartilage loss and destruction in OA patients. Graphical Abstract

Keywords: chondrocyte apoptosis; oxidative stress; admscs derived; stress chondrocyte; sev cur; protective effects

Journal Title: Journal of Nanobiotechnology
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.