LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Quantitative hypoxia mapping using a self-calibrated activatable nanoprobe

Photo by jareddrice from unsplash

Hypoxia is a distinguished hallmark of the tumor microenvironment. Hypoxic signaling affects multiple gene expressions, resulting in tumor invasion and metastasis. Quantification of hypoxic status although challenging, can be useful… Click to show full abstract

Hypoxia is a distinguished hallmark of the tumor microenvironment. Hypoxic signaling affects multiple gene expressions, resulting in tumor invasion and metastasis. Quantification of hypoxic status although challenging, can be useful for monitoring tumor development and aggressiveness. However, hypoxia-independent factors such as nonspecific binding and heterogenous probe delivery considerably influence the probe signal thereby disenabling reliable quantitative imaging in vivo. In this study, we designed a self-calibrated activatable nanoprobe Cy7-1/PG5-Cy5@LWHA that specifically detects nitroreductase activity upregulated in hypoxic tumor cells. Dual fluorescence emission of the nanoprobe enables ratiometric calibration and eliminates the target-independent interference. In orthotopic and metastatic breast cancer mouse models, Cy7-1/PG5-Cy5@LWHA demonstrated remarkable hypoxia sensing capability in vivo. Moreover, ratiometric processing provided quantitative hypoxia assessment at different tumor developmental stages and facilitated tumor burden assessment in the metastatic lymph nodes. Therefore, our study demonstrates that ratiometric imaging of Cy7-1/PG5-Cy5@LWHA can be a prospective noninvasive tool to quantitatively monitor tumor hypoxia, which would be beneficial for investigating the fundamental role of hypoxia in tumor progression and for evaluating response to novel anti-hypoxia therapeutics. Furthermore, successful detection of metastatic lymph nodes with the proposed imaging approach illustrates its potential clinical application in assessing lymph node status during surgery. Graphical Abstract

Keywords: tumor; activatable nanoprobe; self calibrated; calibrated activatable; hypoxia

Journal Title: Journal of Nanobiotechnology
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.