BackgroundFatigue has a major influence on the quality of life of people with multiple sclerosis. The Fatigue Severity Scale is a frequently used patient-reported measure of fatigue impact, but does… Click to show full abstract
BackgroundFatigue has a major influence on the quality of life of people with multiple sclerosis. The Fatigue Severity Scale is a frequently used patient-reported measure of fatigue impact, but does not generate the health state utility values required to inform cost-effectiveness analysis, limiting its applicability within decision-making contexts. The objective of this study was to use statistical mapping methods to convert Fatigue Severity Scale scores to health state utility values from three preference-based measures: the EQ-5D-3L, SF-6D and Multiple Sclerosis Impact Scale-8D.MethodsThe relationships between the measures were estimated through regression analysis using cohort data from 1056 people with multiple sclerosis in South West England. Estimation errors were assessed and predictive performance of the best models as tested in a separate sample (n = 352).ResultsFor the EQ-5D and the Multiple Sclerosis Impact Scale-8D, the best performing models used a censored least absolute deviation specification, with Fatigue Severity Scale total score, age and gender as predictors. For the SF-6D, the best performing model used an ordinary least squares specification, with Fatigue Severity Scale total score as the only predictor.ConclusionsHere we present algorithms to convert Fatigue Severity Scales scores to health state utility values based on three preference-based measures. These values may be used to estimate quality-adjusted life-years for use in cost-effectiveness analyses and to consider the health-related quality of life of people with multiple sclerosis, thereby informing health policy decisions.
               
Click one of the above tabs to view related content.