Background MiR-125 has been shown to be involved in a variety of cancers, including cervical cancer (CC). Here, our goal was to explore miR-125 functional role and molecular mechanism in… Click to show full abstract
Background MiR-125 has been shown to be involved in a variety of cancers, including cervical cancer (CC). Here, our goal was to explore miR-125 functional role and molecular mechanism in cervical cancer development and progression. Methods qRT-PCR was employ to detect miR-125 and VEGF mRNA expression. Western blot was applied for testing protein levels (VEGF, E-cadherin, N-cadherin, vimentin, AKT, p-AKT, PI3K, and p-PI3K). MTT and transwell assays were used for detecting cervical cancer cell progression, including cell viability, migration, and invasion. Results We observed that miR-125 was downregulated, whereas VEGF was upregulated in cervical cancer tissues and cell lines (CaSki and SiHa). MiR-125 inhibited the proliferation, invasion, and migration by targeting VEGF in cervical cancer. Moreover, miR-125 negatively regulated VEGF expression in cervical cancer tissues. Finally, we demonstrated that miR-520d-5p inhibited the activation of PI3K/AKT signaling pathway. Conclusion In conclusion, the findings demonstrated that miR-125 inhibited cervical cancer progression and development by suppression VEGF and PI3K/AKT signaling pathway.
               
Click one of the above tabs to view related content.