LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Role of IQGAP3 in metastasis and epithelial–mesenchymal transition in human hepatocellular carcinoma

Photo from wikipedia

BackgroundHepatocellular carcinoma (HCC) is one of the most lethal cancers worldwide owing to its high rates of metastasis and recurrence. The oncogene IQ motif-containing GTPase activating protein 3 (IQGAP3) is… Click to show full abstract

BackgroundHepatocellular carcinoma (HCC) is one of the most lethal cancers worldwide owing to its high rates of metastasis and recurrence. The oncogene IQ motif-containing GTPase activating protein 3 (IQGAP3) is ubiquitously overexpressed in several human cancers, including liver, ovary, lung, large intestine, gastric, bone marrow, and breast malignancies and is involved in the invasion and metastasis of cancer cells. Therefore, we aimed to determine the biological role and molecular mechanism of IQGAP3 in HCC.MethodsWe used 120 archived clinical HCC samples, 9 snap-frozen HCC tumor tissues, and 4 normal liver tissues. Expression of IQGAP3 mRNA and protein in HCC cell lines (Hep3B, SMMC-7721, HCCC-9810, HepG2, BEL-7404, HCCLM3, QGY-7701, Huh7, and MHCC97H) and normal liver epithelial cells LO2 was examined by western blot, quantitative polymerase chain reaction, and immunohistochemistry. In addition, wound-healing and transwell matrix penetration assays were used to assess the migratory and invasive abilities of HCC cells, respectively.ResultsExpression of the IQGAP3 was robustly upregulated in HCC cells and tissues. High expression of IQGAP3 in HCC correlated with aggressive clinicopathological features and was an independent poor prognostic factor for overall survival. Furthermore, ectopic expression of IQGAP3 markedly enhanced HCC cell migration, invasion, and epithelial-to-mesenchymal transition (EMT) in vitro and promoted metastasis of orthotopic hepatic tumors in nude mice. Conversely, silencing endogenous IQGAP3 showed an opposite effect. Mechanistically, IQGAP3 promoted EMT and metastasis by activating TGF-β signaling.ConclusionsIQGAP3 functions as an important regulator of metastasis and EMT by constitutively activating the TGF-β signaling pathway in HCC. Our findings present new evidence of the role of IQGAP3 in EMT and metastasis, indicating its potential as a prognostic biomarker candidate and a therapeutic target against HCC.

Keywords: mesenchymal transition; hcc; metastasis; epithelial mesenchymal; iqgap3; role

Journal Title: Journal of Translational Medicine
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.