LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Polyethylene glycol improves current methods for circulating extracellular vesicle-derived DNA isolation

Photo by nci from unsplash

BackgroundExtracellular vesicles (EVs) are small membrane-bound vesicles which play an important role in cell-to-cell communication. Their molecular cargo analysis is presented as a new source for biomarker detection, and it… Click to show full abstract

BackgroundExtracellular vesicles (EVs) are small membrane-bound vesicles which play an important role in cell-to-cell communication. Their molecular cargo analysis is presented as a new source for biomarker detection, and it might provide an alternative to traditional solid biopsies. However, the most effective approach for EV isolation is not yet well established.ResultsHere, we study the efficiency of the most common EV isolation methods-ultracentrifugation, Polyethlyene glycol and two commercial kits, Exoquick® and PureExo®. We isolated circulating EVs from the bloodstream of healthy donors, characterized the size and yield of EVs and analyzed their protein profiles and concentration. Moreover, we have used for the first time Digital-PCR to identify and detect specific gDNA sequences, which has several implications for diagnostic and monitoring many types of diseases.ConclusionsOur findings present Polyethylene glycol precipitation as the most feasible and less cost-consuming EV isolation technique.

Keywords: glycol improves; improves current; polyethylene glycol; isolation; current methods

Journal Title: Journal of Translational Medicine
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.